Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides.
نویسندگان
چکیده
Transport of large proteins into the nucleus involves two events, binding of the cargo protein to a transport receptor in the cytoplasm and passage of the cargo-transporter complex through the selective permeability barrier of the nuclear pore complex. The permeability barrier is formed by largely disordered polypeptides, each containing a number of conserved hydrophobic phenylalanine-glycine (FG) sequence motifs, connected by hydrophilic linkers of varying sequence (FG nups). How the motifs interact to form the permeability barrier, however, is not yet known. We have, therefore, carried out molecular dynamics simulations on various model FG repeat peptides to study the aggregation propensity of FG nups and the specific roles of the hydrophobic FG motifs and the hydrophilic linkers. Our simulations show spontaneous aggregation of the model nups into hydrated aggregates, which exhibit structural features assumed to be part of the permeability barrier. Our simulations suggest that short beta-sheets are an important structural feature of the aggregates and that Phe residues are sufficiently exposed to allow rapid binding of transport receptors. A surprisingly large influence of the amino acid composition of the hydrophilic linkers on aggregation is seen, as well as a major contribution of hydrogen-bonding patterns.
منابع مشابه
Sequence dependent aggregation of peptides and fibril formation.
Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in th...
متن کاملSynthesis of hydrophilic and flexible linkers for peptide derivatization in solid phase.
Four N-Fmoc protected polyoxyethylene-based amino acid type linkers were designed and synthesized for peptide derivatization in solid phase. Three of them were obtained in a crystalline form. The crystallized linkers can be stored at 4 degrees C for 2 years without significant decomposition. Protocols for biotinylation and fluorescent labeling of peptides in solid phase were developed. The link...
متن کاملThe Aggregation Behavior of Short Chain Hydrophilic Ionic Liquids in Aqueous Solutions
In this paper, aggregation behaviors of aqueous solutions of short chain hydrophilic Ionic Liquids (ILs), 1 – allyl - 3 - methylimidazolium chloride ([Amim]Cl), 1 - ethyl - 3 - methylimidazolium chloride ([Emim]Cl), 1 - butyl - 3 - methylimidazolium chloride ([Bmim]Cl), 1 - butyl - 3 - methylimidazolium tetrafluoroborate ([Bmim]BF4) were investigated using conductivity and laser ...
متن کاملHydrophobic Collapse of Trigger Factor Monomer in Solution
Trigger factor (TF) is a chaperone, found in bacterial cells and chloroplasts, that interacts with nascent polypeptide chains to suppress aggregation. While its crystal structure has been resolved, the solution structure and dynamics are largely unknown. We performed multiple molecular dynamics simulations on Trigger factor in solution, and show that its tertiary domains display collective moti...
متن کاملThe Combination Process for Preparative Separation and Purification of Paclitaxel and 10-Deacetylbaccatin III Using Diaion® Hp-20 Followed by Hydrophilic Interaction Based Solid Phase Extraction
There is no other naturally occurring defense agent against cancer that has a stronger effectthan paclitaxel, commonly known under the brand name of Taxol®. The major drawback for themore widespread use of paclitaxel and its precious precursor, 10-deacetylbaccatin III (10-DABIII), is that they require large-scale extraction from different parts of yew trees (Taxus species),cell cultures, taxane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 98 11 شماره
صفحات -
تاریخ انتشار 2010